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Design of Cylindrical Dielectric Resonators
in Inhomogeneous Media -

RENE R. BONETTI AND ALI E. ATIA, MEMBER, IEEE

,4Mracf- An iterative analytical method is presented for computing

resonant frequencies of dielectric cyfindricaf resonators in inhomogeneous

media. Normalized design charts are presented including a wide range of

practical geometrical and physical parameters. Numericaf results, when

compared to three independent sets of experimental dat~ show an accuracy

of better than 1 percent.
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NTEREST in the utilization of high-dielectric-constant

resonators has been revived recently because of the Fig. 1. Three possible ways for supporting a dielectric resonator coupled

availability of low-loss temperature-stable materials [1], [2]. to a microstrip line. (a) From below. (b) From above.(c) From the side

Among the many possible applications of these resonators
edge.

are temperature-compensated oscillators [3], [4], low-noise

microwave synthesizers [5], and narrow-bandpass filters [6].
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z
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Several approximate methods have been presented for

determining the resonant frequency of a dielectric cylinder

in the presence of either one [7] or two [8] conductor planes

perpendicular to its axis. In practice, when a resonator is

used in a microwave circuit employing a microstrip trans-

mission medium, the microstrip substrate as well as other

dielectric supports and metallic boundaries can signifi-

cantly alter the resonant frequency predicted from the

idealized conditions usually assumed.

This paper describes an accurate analytical method to

compute the resonant frequency of a high-dielectric-

constant cylinder inside a metallic cylindrical cavity, which o
includes a microstrip dielectric support and several options

for supporting the resonator (Fig. 1). The basic assump-

tions are as follows. ;%+
a) All dielectric materials involved are isotropic and

lossless.

1 1

Fig. 2. Cross section of cavity under analysis.

b) The metallic boundaries are perfectly conducting.

c) The electromagnetic field distribution is that of the
components in the i th region can be written as [9]

dominant TE ,08 mode. (The subscripts refer to the cylin-

drical coordinates r, 8, and z, respectively.)
Hj~)=co(kir)gi(z) (1)

1

H. METHOD OF ANALYSIS
~:o= ~c’ k r)g~(z)

ki 0( i (2)

Fig. 2 shows the configuration to be analyzed, which

consists of a cylindrical high-dielectric-constant material Ef) = yc~(kir)gi(z) (3)

(region 3) positioned between three layers of different
z

dielectrics (regions 1, 2, and 4). The TE ~Oa-mode field ~~) =E:O =EJO =() (4)
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where .JO,KO, and 10 are the appropriate Bessel functions

that describe the field distribution in the cylindrical region

r< R, and the radially decaying fields for r> R,. Also

g,(z) =AlsinhlZz+B, cosh{Zz, i=l,2,4 (5a)

g,(z) =A, sin J,z+BlcOs{Iz, i=3,5. (5b)

The radial and axial wavenumbers (ki and .(,) are related

by the wave equation as

k:=~zpoc,~{: (6)

where the minus sign holdi for i= 3 and 5. The field decay

in the radial direction for r> R, implies that the wavenum-

ber

(jkJ2=&ti2pOc5 (7)

is a real number. This condition will hold only when c~ is

small as compared to C3.

Of the ten unknown constants (Ai’s and B, ‘s) in (l)-(4)

for the field components, eight are related by the boundary

conditions

E$)(r, Z)=o, i=l,4, Z=o, ~ (8)

dz ‘“ dz rn
(9)

drnl$)(r,h, +hz) d~E$)(r, h1+h2)
dzm “ — dz ‘“

(lo)

dmE$3J(r, h1+h2+h3) drnE$(~, h,+ L+hs) ~11)——
dz m dz ‘“

with m = O, 1, totaling a set of eight linear equations. The

existence of nonzero solutions for the above system implies

that

where

{Z/(1 tanhOl + tanhtj

p= 1+ {2 /{1 tanhdl tanh 82

6, =Jih,, i=l,. ..,4.

The relationship between the {i follows from

kl=k2=k3=k4 (13)

1,={,. (14)

Since

l,=?

where 8 defines the mode, (6) and (13) yield

[

2 1/2

( )]
0,= 6J2po(e3-6, )– : h,, i=l,z,q. (15)

3

Equation (12), therefore, has two unknowns, 8 and CO.

Another equation follows from the continuity of the fields,

which at the resonator’s edge can be written in terms of the

wall admittance matching

?+ r= o (16)

where

~;5)
q= — ~=–g

Ef) ‘
r=R1 4’ ,=R1

Equation (16), together with ( l)–(3), yields

JO(k3R1) . GJjk~Rl) no

‘3.1~(k#?, ) ‘Jk5 C~(jk5R, ) “
(17)

A natural way of solving the system [(12) and (17)] is to

iteratively start with the solution of (17) using an assumed

value between O and 1 for 8 (e.g., 8=0.5), and continue by

correcting this value from the solution of ( 12) and the value

of the resonant frequency from (17). This technique can be

easily implemented even on a small computer. However,

the number of iterations necessary to converge to a sta-

tionary result strongly depends on the starting value. The

computations presented in this paper required no more

than six iterations, when the starting frequency was taken

as

computed via the first root of

.lo(k3R1)=0

with (8= O) only. It should be noted

(18)

that when hs <<

A. /fi and R z % Rl, the second term in (17) approaches
zero and the equation becomes equivalent to (18), which

corresponds to a magnetic wall boundary condition at

r=R1.

III. NUMERICAL RESULTS

The pair of eigenvalue equations, (12) and (17), can be

solved in a universal form, independent of the absolute

values of the parameters involved, if the following normali-

zations are introduced:

Equation (15) can then be rewritten as

[() I
1/2

oi = + 2(1-2i) -(&J ii (19)
I

in which

G=uwR,.

The arguments of the Bessel function in (17) becomes

k3R1=[i32-(&rl? 1)2]Vz (20)

jk5R1 = [(~ni1)2–~2t5]I/2. (21)

The resonant normalized frequency 0 of the dielectric

resonator plac~d in free sp~ce can be computed from (12)

and (15) with h,=O, ~2=h4~ca; c,=co(i=l,2,4,5); and

R z\R1 - GO.Under these conditions, (12) and (17) become
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Fig. 3. Normalized resonant frequency of a cylindrical dielectric resona-
tor in free space for an increasing number of iterations compared to the
theoretical and experimental results of [9].
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Fig. 4. Normalized resonant frequency of a dielectric disk in the pres-
ence of a dielectric-coated conductor plane.

{2
tan(tl~)=~ (22)

KO(jk5R, ) COyO(ksRl~ +jks ~j(jk5R1)

“J;(W)
(23)

which are the same equations derived by Itoh and Rudokas

[7] for this particular case.

Fig. 3 compares the convergence of the method dis-

cussed in this paper with the theoretical and experimental
results of Konishi et al. [10]. The small error between these

two approaches is that open resonators couple energy into

free space; therefore, the analysis must include radiation

modes. As pointed out by Itoh [7], this error decreases for

higher dielectric constants. However, radiation effects are

not present in closed structures, as will be exemplified in

the next section.
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Fig. 6. Normalized resonant frequency dependence on the proximity of
two conductor planes (one supporting a microstnp substrate).

Fig. 4 shows’ the effects of the pro~imity of a rrticrostrip

substrate on free-space resonance (h *,4 ~ co) for four dif-

ferent substrate thicknesses and a normalized dielectric

constant between 0.1 and 0.5. It should be noted that the

slope of these curves can be controlled by adjusting either

the substrate thickness or its dielectric constant; however,

for thin substrates (~z < 1/4), a variation of 500 Percent in

its dielectric constant will cause less than 5-percent varia-

tion on the resonant frequency.

Fig. 5 exemplifies the dependence on the cavity radius
for a dielectric resonator placed at several different posi-

tions from the substrate. It shows that the side boundaries
must be placed at a minimum distance from the resonator

of one and a half times its radius if they are not accounted

for in the analysis. (This ratio holds for the set of parame-

ters depicted in the insert.)

Fig. 6 gives an idea of the tunability range of a resonator
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Fig. 7. Theoretical and experimental results for a prototype catity as
depicted in the insert.
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Fig. 8, Theoretical and experimental results for two different external
radii.

enclosed in a flat box in which the sidewalls satisfy the

condition specified above, and is useful for the design of

tunable oscillators and filters. The normalized substrate

dielectric constant ({1 =0.27) corresponds, for example, to

an alumina substrate (~ ~~ 10) and a barium tetratitanate

resonator (C3 ~ 37). The ratio R, /k3 = 1.32 is close to

some standard, commercially available sizes.

IV. EXPERIMENTAL RESULTS

Three sets of experimental data were taken with two

samples of barium tetratitanate placed within different

cavities and dielectric boundaries. In the first two sets

(Figs. 7 and 8) the theoretical data were computed assum-

ing 37.0 for the resonator’s dielectric constant, as measured

by an independent method. The maximum error was of the

order of 0.6 percent in both cases. In the third experiment,

one of the theoretical curves was fitted to the experimental

data to find the dielectric constant of the sample, and the

result was 36.8. With this value in theoretical compu-
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Fig. 9. F.xperimentat results compared to theoretical computations with
a dielectric constant of 36.8 (obtained from curve fitting the data set of
hz =0.254 cm).

tations, the remaining curves show an error of 0.2 percent

(Fig. 9).

V. CONCLUSIONS

A very accurate method was developed to compute the

frequency of a cylindrical high-dielectric-constant resona-

tor placed inside a metallic cylindrical cavity containing all

necessary dielectric supports for both the resonator and

microstrip lines. Normalized design charts have been pre-

sented, covering a wide range of the more relevant parame-

ters.

For a resonator in free space, this method yields the

same analytical expressions derived previously [7]. When

compared to three independent sets of experimental data,

the method shows an accuracy of better than 1 percent in

all cases.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

W. Wakino et ai., “Microwave bandpass filters containing dielectric
resonators with improved temperature stability and spurious re-
sponse,” in Proc. i 975 Int. Microwave Symp., pp. 63– 65, May 1975.
J. K. Plourde et al., “Ba2Tig02 as a microwave dielectric resonator,”
J. Amer. Ceramic Sot., vol. 58, no. 9– 10, pp. 418–420, 1975.

“A dielectric resonator oscillator with 5 ppm long term—,
frequency stability at 4 GHz~’ in IEEE MTT-S Int. Microwave

Symp. Dig., pp. 273-276, June 1977.
S. Tatsuguchi et al., “An integrated 18 GHz receiver front end using
a dielectric resonator stabilized generator,” in ICC 79, Conf. Rec.,
vol. 2, pp. 26.2. 1–5.

G. D. Allev and H. C. Warw. “An ultra low noise microwave
synthesizer,;’ in Dig. 1979 Int. ~icrowaue Symp. (Orlando, FL), pp.
147-149.
J. K. Plourde and D. F. Linn, “Microwave dielectric resonator
filters utilizing BA2TI 2020 ceramics,” in Dig. 1977 Int. Microwaoe
Symp. (San Diego, CA), pp. 290-293.
T. Itoh and R. Rudokas, “New method for computing the resonant
frequency of dielectric resonators,” IEEE Trans. Microwave Theory

Tech., vol. MT’I-25, pp. 52-54, Jan, 1977.
M. Jaworski and M. W. Pospieszalski, “An accurate solution of the
cylindncat dielectric resonators problem,” IEEE Tram. Microwaoe
Theo~ Tech., vol. MTT-27, pp. 639-642, July 1979.
J. C. Sethares and S. J, Naumarm, “Design of microwave dielectric
resonators,” IEEE Trans. Microwave Theorv Tech.. vol. MTT- 14,
pp. 2–7, J&. 1966.
Y. Koniski, N. Hoshino, and Y. Utsum, “Resonant frequency of a
TEO1, dielectric resonator,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-24, pp. 112–114,Feb. 1976.


